Posthoc comparisons

Posthoc comparisons after fitting linear models.


grafify includes the following functions for post-hoc comparisons:

  1. posthoc_Pariwise : all-vs-all comparisons
  2. posthoc_Levelwise: level-wise within a factor
  3. posthoc_vsRef : compare against a control or reference group

All of these are based on the emmeans package. The output has two sections, $emmeans (estimated marginal means) which lists the emmeans, upper and lower CI95 and degrees of freedom, and $contrasts which lists the post-hoc comparisons with key details such as the SE, t ratio and P value. posthoc_ functions need the linear model fit using simple_model or mixed_model, and fixed factors(s) whose levels you wish to compare, which should match those used for fitting the model. For this vignette, I’ll first save models fitted with using simple_model and mixed_model to illustrate posthoc_ functions.

library(grafify) 
library(emmeans)
library(boot)   #for logit transformation 

#simple model
sm_dtime <- simple_model(data_doubling_time, #data table
                         "Doubling_time",    #dependent variable
                         "Student")          #one fixed factor

#mixed model with one random factor
mod_chol <- mixed_model(data_cholesterol,    #data table
                        "Cholesterol",       #dependent variable
                        c("Hospital", "Treatment"),  #two fixed factors
                        "Subject")           #random factor

#mided model with two random factors
mod_2wtdeath <- mixed_model(data_2w_Tdeath,
            "logit(PI/100)",     #logit transformation in formula
            c("Genotype", "Time"),           #two fixed factors
            c("Experiment", "Subject"))      #two random factors

posthoc_Pairwise

This will generate a lot of comparisons and should be used only when necessary. By default, multiple comparisons are corrected by the FDR method in grafify. This can be changed using the P_Adj argument.

As you will see with data from 10 students, pairwise comparisons generates a LOT of P values! Below I use the same model to compare every student with student A as Reference using posthoc_vsRef.

The essential arguments are the Model object and Factors which is a vector of fixed factors and should match those used in the Model object.

posthoc_Pairwise(sm_dtime,        #model fit with simple_model 
                 "Student")       #fixed factor 
#> $emmeans
#>  Student emmean   SE df lower.CL upper.CL
#>  A         20.0 1.15 20     17.6     22.4
#>  B         19.6 1.15 20     17.2     22.0
#>  C         19.4 1.15 20     17.0     21.8
#>  D         18.8 1.15 20     16.4     21.2
#>  E         19.3 1.15 20     16.9     21.7
#>  F         20.7 1.15 20     18.3     23.1
#>  G         20.5 1.15 20     18.1     22.8
#>  H         19.2 1.15 20     16.8     21.5
#>  I         20.6 1.15 20     18.2     23.0
#>  J         21.2 1.15 20     18.8     23.6
#> 
#> Confidence level used: 0.95 
#> 
#> $contrasts
#>  contrast estimate   SE df t.ratio p.value
#>  A - B      0.3713 1.62 20   0.229  0.9554
#>  A - C      0.5929 1.62 20   0.365  0.9554
#>  A - D      1.1728 1.62 20   0.722  0.9554
#>  A - E      0.6286 1.62 20   0.387  0.9554
#>  A - F     -0.7416 1.62 20  -0.457  0.9554
#>  A - G     -0.4885 1.62 20  -0.301  0.9554
#>  A - H      0.8083 1.62 20   0.498  0.9554
#>  A - I     -0.6775 1.62 20  -0.417  0.9554
#>  A - J     -1.2115 1.62 20  -0.746  0.9554
#>  B - C      0.2216 1.62 20   0.136  0.9554
#>  B - D      0.8014 1.62 20   0.493  0.9554
#>  B - E      0.2572 1.62 20   0.158  0.9554
#>  B - F     -1.1130 1.62 20  -0.685  0.9554
#>  B - G     -0.8598 1.62 20  -0.529  0.9554
#>  B - H      0.4370 1.62 20   0.269  0.9554
#>  B - I     -1.0488 1.62 20  -0.646  0.9554
#>  B - J     -1.5829 1.62 20  -0.975  0.9554
#>  C - D      0.5798 1.62 20   0.357  0.9554
#>  C - E      0.0356 1.62 20   0.022  0.9827
#>  C - F     -1.3346 1.62 20  -0.822  0.9554
#>  C - G     -1.0814 1.62 20  -0.666  0.9554
#>  C - H      0.2154 1.62 20   0.133  0.9554
#>  C - I     -1.2704 1.62 20  -0.782  0.9554
#>  C - J     -1.8044 1.62 20  -1.111  0.9554
#>  D - E     -0.5442 1.62 20  -0.335  0.9554
#>  D - F     -1.9144 1.62 20  -1.179  0.9554
#>  D - G     -1.6612 1.62 20  -1.023  0.9554
#>  D - H     -0.3644 1.62 20  -0.224  0.9554
#>  D - I     -1.8503 1.62 20  -1.139  0.9554
#>  D - J     -2.3843 1.62 20  -1.468  0.9554
#>  E - F     -1.3702 1.62 20  -0.844  0.9554
#>  E - G     -1.1170 1.62 20  -0.688  0.9554
#>  E - H      0.1798 1.62 20   0.111  0.9554
#>  E - I     -1.3061 1.62 20  -0.804  0.9554
#>  E - J     -1.8401 1.62 20  -1.133  0.9554
#>  F - G      0.2532 1.62 20   0.156  0.9554
#>  F - H      1.5500 1.62 20   0.954  0.9554
#>  F - I      0.0642 1.62 20   0.040  0.9827
#>  F - J     -0.4699 1.62 20  -0.289  0.9554
#>  G - H      1.2968 1.62 20   0.798  0.9554
#>  G - I     -0.1890 1.62 20  -0.116  0.9554
#>  G - J     -0.7231 1.62 20  -0.445  0.9554
#>  H - I     -1.4858 1.62 20  -0.915  0.9554
#>  H - J     -2.0199 1.62 20  -1.244  0.9554
#>  I - J     -0.5340 1.62 20  -0.329  0.9554
#> 
#> P value adjustment: fdr method for 45 tests

“tukey” correction

posthoc_Pairwise(sm_dtime,
                 "Student",
                 P_Adj = "tukey") #tukey adjustment
#> $emmeans
#>  Student emmean   SE df lower.CL upper.CL
#>  A         20.0 1.15 20     17.6     22.4
#>  B         19.6 1.15 20     17.2     22.0
#>  C         19.4 1.15 20     17.0     21.8
#>  D         18.8 1.15 20     16.4     21.2
#>  E         19.3 1.15 20     16.9     21.7
#>  F         20.7 1.15 20     18.3     23.1
#>  G         20.5 1.15 20     18.1     22.8
#>  H         19.2 1.15 20     16.8     21.5
#>  I         20.6 1.15 20     18.2     23.0
#>  J         21.2 1.15 20     18.8     23.6
#> 
#> Confidence level used: 0.95 
#> 
#> $contrasts
#>  contrast estimate   SE df t.ratio p.value
#>  A - B      0.3713 1.62 20   0.229  1.0000
#>  A - C      0.5929 1.62 20   0.365  1.0000
#>  A - D      1.1728 1.62 20   0.722  0.9990
#>  A - E      0.6286 1.62 20   0.387  1.0000
#>  A - F     -0.7416 1.62 20  -0.457  1.0000
#>  A - G     -0.4885 1.62 20  -0.301  1.0000
#>  A - H      0.8083 1.62 20   0.498  0.9999
#>  A - I     -0.6775 1.62 20  -0.417  1.0000
#>  A - J     -1.2115 1.62 20  -0.746  0.9987
#>  B - C      0.2216 1.62 20   0.136  1.0000
#>  B - D      0.8014 1.62 20   0.493  1.0000
#>  B - E      0.2572 1.62 20   0.158  1.0000
#>  B - F     -1.1130 1.62 20  -0.685  0.9993
#>  B - G     -0.8598 1.62 20  -0.529  0.9999
#>  B - H      0.4370 1.62 20   0.269  1.0000
#>  B - I     -1.0488 1.62 20  -0.646  0.9996
#>  B - J     -1.5829 1.62 20  -0.975  0.9906
#>  C - D      0.5798 1.62 20   0.357  1.0000
#>  C - E      0.0356 1.62 20   0.022  1.0000
#>  C - F     -1.3346 1.62 20  -0.822  0.9973
#>  C - G     -1.0814 1.62 20  -0.666  0.9995
#>  C - H      0.2154 1.62 20   0.133  1.0000
#>  C - I     -1.2704 1.62 20  -0.782  0.9981
#>  C - J     -1.8044 1.62 20  -1.111  0.9776
#>  D - E     -0.5442 1.62 20  -0.335  1.0000
#>  D - F     -1.9144 1.62 20  -1.179  0.9676
#>  D - G     -1.6612 1.62 20  -1.023  0.9870
#>  D - H     -0.3644 1.62 20  -0.224  1.0000
#>  D - I     -1.8503 1.62 20  -1.139  0.9738
#>  D - J     -2.3843 1.62 20  -1.468  0.8895
#>  E - F     -1.3702 1.62 20  -0.844  0.9967
#>  E - G     -1.1170 1.62 20  -0.688  0.9993
#>  E - H      0.1798 1.62 20   0.111  1.0000
#>  E - I     -1.3061 1.62 20  -0.804  0.9977
#>  E - J     -1.8401 1.62 20  -1.133  0.9747
#>  F - G      0.2532 1.62 20   0.156  1.0000
#>  F - H      1.5500 1.62 20   0.954  0.9919
#>  F - I      0.0642 1.62 20   0.040  1.0000
#>  F - J     -0.4699 1.62 20  -0.289  1.0000
#>  G - H      1.2968 1.62 20   0.798  0.9978
#>  G - I     -0.1890 1.62 20  -0.116  1.0000
#>  G - J     -0.7231 1.62 20  -0.445  1.0000
#>  H - I     -1.4858 1.62 20  -0.915  0.9940
#>  H - J     -2.0199 1.62 20  -1.244  0.9553
#>  I - J     -0.5340 1.62 20  -0.329  1.0000
#> 
#> P value adjustment: tukey method for comparing a family of 10 estimates

posthoc_Levelwise

We use this for factorial designs to compare levels within one factor at each level of another factor. This is best seen with the data_cholesterol and data_2wTdeath data which have two fixed factors each.

The order in which the vector for fixed factor is provided determines how the comparison are performed. See the difference between results with Factors = c("Hospital", "Treatment") and Factors = c("Treatment", "Hospital") below.

#compare "Hospital" at each Level of Treatment separately
posthoc_Levelwise(mod_chol,                       #model
                  c("Hospital", "Treatment"))     #fixed factors
#> $emmeans
#> Treatment = After_drug:
#>  Hospital emmean   SE   df lower.CL upper.CL
#>  Hosp_a      147 23.3 20.3     98.4      196
#>  Hosp_b      142 23.3 20.3     93.8      191
#>  Hosp_c      105 23.3 20.3     56.4      154
#>  Hosp_d      163 23.3 20.3    114.2      211
#>  Hosp_e      162 23.3 20.3    113.8      211
#> 
#> Treatment = Before_drug:
#>  Hospital emmean   SE   df lower.CL upper.CL
#>  Hosp_a      173 23.3 20.3    124.6      222
#>  Hosp_b      161 23.3 20.3    111.9      209
#>  Hosp_c      124 23.3 20.3     75.6      173
#>  Hosp_d      162 23.3 20.3    113.1      210
#>  Hosp_e      163 23.3 20.3    114.2      211
#> 
#> Degrees-of-freedom method: kenward-roger 
#> Confidence level used: 0.95 
#> 
#> $contrasts
#> Treatment = After_drug:
#>  contrast        estimate SE   df t.ratio p.value
#>  Hosp_a - Hosp_b    4.587 33 20.3   0.139  0.9898
#>  Hosp_a - Hosp_c   42.004 33 20.3   1.273  0.6749
#>  Hosp_a - Hosp_d  -15.770 33 20.3  -0.478  0.8062
#>  Hosp_a - Hosp_e  -15.432 33 20.3  -0.468  0.8062
#>  Hosp_b - Hosp_c   37.417 33 20.3   1.134  0.6749
#>  Hosp_b - Hosp_d  -20.356 33 20.3  -0.617  0.8062
#>  Hosp_b - Hosp_e  -20.019 33 20.3  -0.607  0.8062
#>  Hosp_c - Hosp_d  -57.774 33 20.3  -1.751  0.4841
#>  Hosp_c - Hosp_e  -57.436 33 20.3  -1.741  0.4841
#>  Hosp_d - Hosp_e    0.338 33 20.3   0.010  0.9919
#> 
#> Treatment = Before_drug:
#>  contrast        estimate SE   df t.ratio p.value
#>  Hosp_a - Hosp_b   12.662 33 20.3   0.384  0.9746
#>  Hosp_a - Hosp_c   49.005 33 20.3   1.485  0.7088
#>  Hosp_a - Hosp_d   11.432 33 20.3   0.347  0.9746
#>  Hosp_a - Hosp_e   10.370 33 20.3   0.314  0.9746
#>  Hosp_b - Hosp_c   36.343 33 20.3   1.102  0.7088
#>  Hosp_b - Hosp_d   -1.230 33 20.3  -0.037  0.9746
#>  Hosp_b - Hosp_e   -2.291 33 20.3  -0.069  0.9746
#>  Hosp_c - Hosp_d  -37.573 33 20.3  -1.139  0.7088
#>  Hosp_c - Hosp_e  -38.635 33 20.3  -1.171  0.7088
#>  Hosp_d - Hosp_e   -1.062 33 20.3  -0.032  0.9746
#> 
#> Degrees-of-freedom method: kenward-roger 
#> P value adjustment: fdr method for 10 tests
#compare "Treatment" at each Level of Hospital separately
posthoc_Levelwise(mod_chol,
                  c("Treatment", "Hospital"))
#> $emmeans
#> Hospital = Hosp_a:
#>  Treatment   emmean   SE   df lower.CL upper.CL
#>  After_drug     147 23.3 20.3     98.4      196
#>  Before_drug    173 23.3 20.3    124.6      222
#> 
#> Hospital = Hosp_b:
#>  Treatment   emmean   SE   df lower.CL upper.CL
#>  After_drug     142 23.3 20.3     93.8      191
#>  Before_drug    161 23.3 20.3    111.9      209
#> 
#> Hospital = Hosp_c:
#>  Treatment   emmean   SE   df lower.CL upper.CL
#>  After_drug     105 23.3 20.3     56.4      154
#>  Before_drug    124 23.3 20.3     75.6      173
#> 
#> Hospital = Hosp_d:
#>  Treatment   emmean   SE   df lower.CL upper.CL
#>  After_drug     163 23.3 20.3    114.2      211
#>  Before_drug    162 23.3 20.3    113.1      210
#> 
#> Hospital = Hosp_e:
#>  Treatment   emmean   SE   df lower.CL upper.CL
#>  After_drug     162 23.3 20.3    113.8      211
#>  Before_drug    163 23.3 20.3    114.2      211
#> 
#> Degrees-of-freedom method: kenward-roger 
#> Confidence level used: 0.95 
#> 
#> $contrasts
#> Hospital = Hosp_a:
#>  contrast                 estimate   SE df t.ratio p.value
#>  After_drug - Before_drug  -26.165 4.13 20  -6.341  <.0001
#> 
#> Hospital = Hosp_b:
#>  contrast                 estimate   SE df t.ratio p.value
#>  After_drug - Before_drug  -18.090 4.13 20  -4.384  0.0003
#> 
#> Hospital = Hosp_c:
#>  contrast                 estimate   SE df t.ratio p.value
#>  After_drug - Before_drug  -19.164 4.13 20  -4.645  0.0002
#> 
#> Hospital = Hosp_d:
#>  contrast                 estimate   SE df t.ratio p.value
#>  After_drug - Before_drug    1.037 4.13 20   0.251  0.8041
#> 
#> Hospital = Hosp_e:
#>  contrast                 estimate   SE df t.ratio p.value
#>  After_drug - Before_drug   -0.362 4.13 20  -0.088  0.9309
#> 
#> Degrees-of-freedom method: kenward-roger

Again, for the repeated-measures data_2wTdeath, note the difference between c("Geno", "Time") and c("Time", "Geno") below:

#compare Genotypes at each Level of Time separately 
posthoc_Levelwise(mod_2wtdeath,          #model
                  c("Genotype", "Time")) #vector of fixed factors
#> $emmeans
#> Time = t100:
#>  Genotype response     SE   df lower.CL upper.CL
#>  WT         0.2304 0.0270 11.5   0.1766   0.2948
#>  KO         0.0668 0.0095 11.5   0.0487   0.0908
#> 
#> Time = t300:
#>  Genotype response     SE   df lower.CL upper.CL
#>  WT         0.3697 0.0355 11.5   0.2958   0.4502
#>  KO         0.0997 0.0137 11.5   0.0735   0.1340
#> 
#> Degrees-of-freedom method: kenward-roger 
#> Confidence level used: 0.95 
#> Intervals are back-transformed from the logit scale 
#> 
#> $contrasts
#> Time = t100:
#>  contrast odds.ratio    SE   df null t.ratio p.value
#>  WT / KO        4.19 0.882 5.83    1   6.797  0.0006
#> 
#> Time = t300:
#>  contrast odds.ratio    SE   df null t.ratio p.value
#>  WT / KO        5.29 1.120 5.83    1   7.913  0.0002
#> 
#> Degrees-of-freedom method: kenward-roger 
#> Tests are performed on the log odds ratio scale
#compare Time at each Level of Genotype separately 
posthoc_Levelwise(mod_2wtdeath,          #model
                  c("Time", "Genotype")) #vector of fixed factors
#> $emmeans
#> Genotype = WT:
#>  Time response     SE   df lower.CL upper.CL
#>  t100   0.2304 0.0270 11.5   0.1766   0.2948
#>  t300   0.3697 0.0355 11.5   0.2958   0.4502
#> 
#> Genotype = KO:
#>  Time response     SE   df lower.CL upper.CL
#>  t100   0.0668 0.0095 11.5   0.0487   0.0908
#>  t300   0.0997 0.0137 11.5   0.0735   0.1340
#> 
#> Degrees-of-freedom method: kenward-roger 
#> Confidence level used: 0.95 
#> Intervals are back-transformed from the logit scale 
#> 
#> $contrasts
#> Genotype = WT:
#>  contrast    odds.ratio     SE df null t.ratio p.value
#>  t100 / t300      0.510 0.0419 10    1  -8.199  <.0001
#> 
#> Genotype = KO:
#>  contrast    odds.ratio     SE df null t.ratio p.value
#>  t100 / t300      0.646 0.0530 10    1  -5.333  0.0003
#> 
#> Degrees-of-freedom method: kenward-roger 
#> Tests are performed on the log odds ratio scale

In the results above you will see that the comparisons are shown as ratios WT / KO or t100 / t300 – this is because the model was fit on logit-transformed data, which results in comparison of ratios.

posthoc_vsRef

The Reference group is entered by its number in the alphabetic list of levels (unless factors are manually changed e.g. with fct_relevel from the forcats package, R uses alphabetical factor names). In posthoc_vsRef, the argument Ref for reference or control group is set to Ref = 1, and it can be changed to whichever is your reference group. Again, order of the fixed factors determines how comparisons are made.

#Ref = 1 (default), means Hosp_a is compared to all others
posthoc_vsRef(mod_chol, 
              c("Hospital", "Treatment")) #compare Hospitals with  Hosp_a for each level of Treatment
#> $emmeans
#> Treatment = After_drug:
#>  Hospital emmean   SE   df lower.CL upper.CL
#>  Hosp_a      147 23.3 20.3     98.4      196
#>  Hosp_b      142 23.3 20.3     93.8      191
#>  Hosp_c      105 23.3 20.3     56.4      154
#>  Hosp_d      163 23.3 20.3    114.2      211
#>  Hosp_e      162 23.3 20.3    113.8      211
#> 
#> Treatment = Before_drug:
#>  Hospital emmean   SE   df lower.CL upper.CL
#>  Hosp_a      173 23.3 20.3    124.6      222
#>  Hosp_b      161 23.3 20.3    111.9      209
#>  Hosp_c      124 23.3 20.3     75.6      173
#>  Hosp_d      162 23.3 20.3    113.1      210
#>  Hosp_e      163 23.3 20.3    114.2      211
#> 
#> Degrees-of-freedom method: kenward-roger 
#> Confidence level used: 0.95 
#> 
#> $contrasts
#> Treatment = After_drug:
#>  contrast        estimate SE   df t.ratio p.value
#>  Hosp_b - Hosp_a    -4.59 33 20.3  -0.139  0.8908
#>  Hosp_c - Hosp_a   -42.00 33 20.3  -1.273  0.8599
#>  Hosp_d - Hosp_a    15.77 33 20.3   0.478  0.8599
#>  Hosp_e - Hosp_a    15.43 33 20.3   0.468  0.8599
#> 
#> Treatment = Before_drug:
#>  contrast        estimate SE   df t.ratio p.value
#>  Hosp_b - Hosp_a   -12.66 33 20.3  -0.384  0.7565
#>  Hosp_c - Hosp_a   -49.00 33 20.3  -1.485  0.6112
#>  Hosp_d - Hosp_a   -11.43 33 20.3  -0.347  0.7565
#>  Hosp_e - Hosp_a   -10.37 33 20.3  -0.314  0.7565
#> 
#> Degrees-of-freedom method: kenward-roger 
#> P value adjustment: fdr method for 4 tests
posthoc_vsRef(mod_chol, 
              c("Hospital", "Treatment"),
              Ref = 3) #Hosp_c set as Reference
#> $emmeans
#> Treatment = After_drug:
#>  Hospital emmean   SE   df lower.CL upper.CL
#>  Hosp_a      147 23.3 20.3     98.4      196
#>  Hosp_b      142 23.3 20.3     93.8      191
#>  Hosp_c      105 23.3 20.3     56.4      154
#>  Hosp_d      163 23.3 20.3    114.2      211
#>  Hosp_e      162 23.3 20.3    113.8      211
#> 
#> Treatment = Before_drug:
#>  Hospital emmean   SE   df lower.CL upper.CL
#>  Hosp_a      173 23.3 20.3    124.6      222
#>  Hosp_b      161 23.3 20.3    111.9      209
#>  Hosp_c      124 23.3 20.3     75.6      173
#>  Hosp_d      162 23.3 20.3    113.1      210
#>  Hosp_e      163 23.3 20.3    114.2      211
#> 
#> Degrees-of-freedom method: kenward-roger 
#> Confidence level used: 0.95 
#> 
#> $contrasts
#> Treatment = After_drug:
#>  contrast        estimate SE   df t.ratio p.value
#>  Hosp_a - Hosp_c     42.0 33 20.3   1.273  0.2699
#>  Hosp_b - Hosp_c     37.4 33 20.3   1.134  0.2699
#>  Hosp_d - Hosp_c     57.8 33 20.3   1.751  0.1937
#>  Hosp_e - Hosp_c     57.4 33 20.3   1.741  0.1937
#> 
#> Treatment = Before_drug:
#>  contrast        estimate SE   df t.ratio p.value
#>  Hosp_a - Hosp_c     49.0 33 20.3   1.485  0.2835
#>  Hosp_b - Hosp_c     36.3 33 20.3   1.102  0.2835
#>  Hosp_d - Hosp_c     37.6 33 20.3   1.139  0.2835
#>  Hosp_e - Hosp_c     38.6 33 20.3   1.171  0.2835
#> 
#> Degrees-of-freedom method: kenward-roger 
#> P value adjustment: fdr method for 4 tests

See the difference changing order of Treatment and Hospital makes. Treatment has an effect at Hosp_a - Hosp_c. There will be an error if Ref is set to a number higher than the number of levels.

posthoc_vsRef(mod_chol, 
              c("Treatment", "Hospital")) #Ref = 1 or Ref = 2 are equivalent as there are only two levels in Treatment
#> $emmeans
#> Hospital = Hosp_a:
#>  Treatment   emmean   SE   df lower.CL upper.CL
#>  After_drug     147 23.3 20.3     98.4      196
#>  Before_drug    173 23.3 20.3    124.6      222
#> 
#> Hospital = Hosp_b:
#>  Treatment   emmean   SE   df lower.CL upper.CL
#>  After_drug     142 23.3 20.3     93.8      191
#>  Before_drug    161 23.3 20.3    111.9      209
#> 
#> Hospital = Hosp_c:
#>  Treatment   emmean   SE   df lower.CL upper.CL
#>  After_drug     105 23.3 20.3     56.4      154
#>  Before_drug    124 23.3 20.3     75.6      173
#> 
#> Hospital = Hosp_d:
#>  Treatment   emmean   SE   df lower.CL upper.CL
#>  After_drug     163 23.3 20.3    114.2      211
#>  Before_drug    162 23.3 20.3    113.1      210
#> 
#> Hospital = Hosp_e:
#>  Treatment   emmean   SE   df lower.CL upper.CL
#>  After_drug     162 23.3 20.3    113.8      211
#>  Before_drug    163 23.3 20.3    114.2      211
#> 
#> Degrees-of-freedom method: kenward-roger 
#> Confidence level used: 0.95 
#> 
#> $contrasts
#> Hospital = Hosp_a:
#>  contrast                 estimate   SE df t.ratio p.value
#>  Before_drug - After_drug   26.165 4.13 20   6.341  <.0001
#> 
#> Hospital = Hosp_b:
#>  contrast                 estimate   SE df t.ratio p.value
#>  Before_drug - After_drug   18.090 4.13 20   4.384  0.0003
#> 
#> Hospital = Hosp_c:
#>  contrast                 estimate   SE df t.ratio p.value
#>  Before_drug - After_drug   19.164 4.13 20   4.645  0.0002
#> 
#> Hospital = Hosp_d:
#>  contrast                 estimate   SE df t.ratio p.value
#>  Before_drug - After_drug   -1.037 4.13 20  -0.251  0.8041
#> 
#> Hospital = Hosp_e:
#>  contrast                 estimate   SE df t.ratio p.value
#>  Before_drug - After_drug    0.362 4.13 20   0.088  0.9309
#> 
#> Degrees-of-freedom method: kenward-roger

posthoc_Trends

This is a wrapper around emtrends from the emmeans package.

In the data_2w_Tdeath dataset, Time2 is a numeric version of the categorical Time variable. These are measurements at two times points (100 and 300 min).

We can plot them on a numeric XY graph.

plot_xy_CatGroup(data_2w_Tdeath,
                 Time2,
                 PI,
                 Genotype)+
  geom_smooth(method = "lm",
              aes(colour = Genotype),
              show.legend = FALSE)+
  scale_colour_grafify()

The above plot is not possible with the Time variable, which is a categorical factor, and was used with plot_4d_scatterbox, for example.

We can use posthoc_Trends on a linear model fit using Time2 as numeric covariate to assess difference in slopes and values at different time points.

#fit a model with Time2

tmod <- mixed_model(data_2w_Tdeath,
                    "PI", 
                    c("Genotype", "Time2"),
                    "Experiment")
#get slopes (trends) of lines and their comparisons
#there are only 2 levels in Genotype
#all these give same results

posthoc_Trends_Pairwise(Model = tmod,
                        Fixed_Factor = "Genotype",
                        Trend_Factor = "Time2")
#> $emtrends
#>  Genotype Time2.trend     SE df lower.CL upper.CL
#>  WT            0.0678 0.0144 15   0.0371   0.0985
#>  KO            0.0163 0.0144 15  -0.0144   0.0471
#> 
#> Results are averaged over the levels of: Time2 
#> Degrees-of-freedom method: kenward-roger 
#> Confidence level used: 0.95 
#> 
#> $contrasts
#>  contrast estimate     SE df t.ratio p.value
#>  WT - KO    0.0515 0.0204 15   2.526  0.0233
#> 
#> Results are averaged over the levels of: Time2 
#> Degrees-of-freedom method: kenward-roger
posthoc_Trends_Levelwise(Model = tmod,
                         Fixed_Factor = c("Genotype", "Time2"),
                         Trend_Factor = "Time2")
#> $emtrends
#> Time2 = 100:
#>  Genotype Time2.trend     SE df lower.CL upper.CL
#>  WT            0.0678 0.0144 15   0.0371   0.0985
#>  KO            0.0163 0.0144 15  -0.0144   0.0471
#> 
#> Time2 = 300:
#>  Genotype Time2.trend     SE df lower.CL upper.CL
#>  WT            0.0678 0.0144 15   0.0371   0.0985
#>  KO            0.0163 0.0144 15  -0.0144   0.0471
#> 
#> Degrees-of-freedom method: kenward-roger 
#> Confidence level used: 0.95 
#> 
#> $contrasts
#> Time2 = 100:
#>  contrast estimate     SE df t.ratio p.value
#>  WT - KO    0.0515 0.0204 15   2.526  0.0233
#> 
#> Time2 = 300:
#>  contrast estimate     SE df t.ratio p.value
#>  WT - KO    0.0515 0.0204 15   2.526  0.0233
#> 
#> Degrees-of-freedom method: kenward-roger
posthoc_Trends_vsRef(Model = tmod,
                     Fixed_Factor = c("Genotype", "Time2"),
                     Trend_Factor = "Time2",
                     Ref_Level = 2)   #WT is level 2
#> $emtrends
#> Time2 = 100:
#>  Genotype Time2.trend     SE df lower.CL upper.CL
#>  WT            0.0678 0.0144 15   0.0371   0.0985
#>  KO            0.0163 0.0144 15  -0.0144   0.0471
#> 
#> Time2 = 300:
#>  Genotype Time2.trend     SE df lower.CL upper.CL
#>  WT            0.0678 0.0144 15   0.0371   0.0985
#>  KO            0.0163 0.0144 15  -0.0144   0.0471
#> 
#> Degrees-of-freedom method: kenward-roger 
#> Confidence level used: 0.95 
#> 
#> $contrasts
#> Time2 = 100:
#>  contrast estimate     SE df t.ratio p.value
#>  WT - KO    0.0515 0.0204 15   2.526  0.0233
#> 
#> Time2 = 300:
#>  contrast estimate     SE df t.ratio p.value
#>  WT - KO    0.0515 0.0204 15   2.526  0.0233
#> 
#> Degrees-of-freedom method: kenward-roger